普通石英砂多少钱一吨

天然石英砂多少钱一吨

源瑞升矿业
联系电话:15803118836。(同微信)
针对近年国内新建水厂滤池多采用粗粒径滤料、滤层加厚的趋势,本文结合试验研究与生产实际,从唯象观点与机理分析,阐述了快滤池滤料粒径的粒度对过滤性能的影响,以及由此产生的滤料厚度与滤料粒径比值(L/d)的概念,说明了L/d值是快滤池设计中保证过滤效能和水质的关键因素。

在以地表水为水源的给水净化工程中,滤池是不可缺少的重要的处理构筑物。由于快滤池的滤速是慢滤池的几十倍到几百倍,在解决了清洗滤池的反冲洗技术后,快滤池目前已取代了慢滤池。本文所谈及的内容限于快滤池。和欧洲的情况相比,我国给水净化工程中所用的滤池滤层薄、粒度细。我国设计规范有关滤料部分,单层滤料过滤只规定了石英砂,粒径范围dmin-dmax为0.5-1.2mm、层厚0.7m。

从本世纪六十年代起,法国和苏联就开展了粗滤料过滤技术研究。其后法国开发了V型滤池,通常石英砂滤料粒径范围dmin-dmax为0.9-1.35mm,也可扩至0.7-2.0mm、层厚在0.95-1.50m之间。

美国在八十年代则采用无烟煤滤料建成日处理水量216万m3的洛杉矶水厂,有效粒径d(10)达1.5mm,均匀系数k(60)为1.5、层厚1.8m。由美国人设计的巴西圣保罗水厂日处理量130万m3,采用石英砂滤料,有效粒径d(10)为1.7mm、均匀系数k(60)达1.5、层厚1.8m。

我国目前滤池设计也有滤料粒度加大、滤层加厚的趋势。例如九五年建成的北京第九水厂二期工程,日处理水量50万m3,采用无烟煤滤料,有效粒径d10为1.10mm、均匀系数k(60)1.35、层厚1.5m。

滤料粒度的变化对滤池的过滤性能有何影响?滤料粒度和滤层厚度如何制约着滤池的过滤能力?如何从表象和微观去分析和认识?笔者谨以此文与大家共同探讨。

按唯象观点即不涉及机理,认为过滤是水中悬浮物被截留的过程,被截留的悬浮物充塞于滤料间的空隙。滤层孔隙尺度以及孔隙率的大小,在同种滤料、相同反冲洗条件下,随滤料粒度的加大而增大。即滤料粒度越粗,可容纳悬浮物的空间越大。其表现为过滤能力增强,纳污能力增加,截污量增大。同时,滤层孔隙越大,水中悬浮物越能被更深地输送至下一层滤层,在有足够保护厚度的条件下,悬浮物可以更多地被截留,使中下层滤层更好地发挥截留作用,滤池截污量增加。

有实验表明,有效粒径1.33mm石英砂滤料的截污能力比1.10mm石英砂滤料高出15%,有效粒径1.48mm石英砂滤料的截污能力比1.10mm石英砂滤料高出26%。通过观察可以看出,粒径为1.33mm的石英砂滤料,过滤过程中悬浮物被更深地携至中层,更多地发挥了中层滤料的截污作用,因而纳污能力强、过滤周期相应加长、产水量加大。从力学特性讲,滤料截留悬浮物依靠的是颗粒间的范德华力、库仑力和表面张力。这些力使悬浮物迁移并被吸附。

同时,过滤水流在滤层中的活动与滤料颗粒间的水流剪力则具有使被截留吸附在滤料颗粒表面的悬浮物剥落的可能,并同时产生附加水头,即产生水头损失。滤料粒度增大,空隙标准加大,空隙空间增加,过水通道标准大,过滤水流阻力减弱,水头损失增量将得以延缓,其结果达到特定终止水头损失的过滤周期得以延长,产水量得到增加。如此就可得出结论,滤料粒径大小、空隙度大小对过滤过程的影响,即滤料粒径增加、水头损失减小、过滤周期势必延长、产水量增加。

随着滤料粒径的加大,固然能更多地发挥下层滤料的截留作用,但同时也对穿透深度带来影响,即在其它条件等同时,粒径越粗穿透深度也越大。多来净水的小编认为,经絮凝后弱的絮体穿透深度与滤料粒径的三次方成正比,强的絮体穿透深度与滤料粒径的二次方成正比。由此我们可以得出一个结论,相同厚度的滤层,在一定范围内,滤料粒径越粗,由于穿透深度越大,出水浊度将不如粒径细的滤料。

在这里我们要说明的一点是,石英砂滤料、无烟煤滤料粒径越粗滤层截污能力越强、过滤周期产水量越大的观点应是建立在满足一定出水水质(浊度)要求的前提下的。假如一味地用出水水质做比,在其它条件相同的情况下,粒径细的滤料出水浊度总要比粒径粗的滤料出水浊度低。这一点在实际工程中非常重要,即为达到预期的水质要求,应尽量选用适当粗粒径的滤料,而不是用粗粒径的滤料。

滤料粒度加大对过滤效果还会带来一个负作用。随着滤料粒径加大、孔隙度加大,所提供的表面积就会变小。而在快速滤池的过滤过程中,滤料所提供的颗粒表面积是至关重要的,由于快滤池的过滤能力来自滤料颗粒表面的吸附作用,滤料所提供的颗粒表面积越大,对水中悬浮物的附着力越强。滤料力度加大就会导致表面积减小,从而降低过滤能力 。因此,保证出水水质,单位面积滤层所提供的表面积必须满足某一低量值以上的要求。

在各种粒径范围的石英砂滤料中,小于指定下限粒径的不应大于3%,大于指定上限粒径的不应大于2%。

【冰有弹性,可弯曲?科学家用冰制备光纤】生长成单晶微纳光纤的冰,居然在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光。浙江大学光电学院教授童利民团队在长期研究中发现了这种奇妙的现象。他们联合来自交叉力学中心和加州大学伯克利分校的合作者,实现用冰制备光纤,相关成果https://t.cn/A6fK9Vey于7月9日发表于《科学》。

△ 从不可能到可能

在人们的常识中,冰是一种透明易碎的脆性物质,没有弹性、无法弯折。

从古至今,人类对冰的好奇心从未停息,人们对冰进行了广泛深入的研究,从冰的高压相、二维结构等新形态,到电子束光刻等应用探索,对冰的认识和应用能力得到了很大的提升。

但能否用冰来制备光纤?在长达4年的研究中,童利民团队给出了肯定答案。

图1:研究团队生长的直径均匀的冰单晶微纳光纤。

我们通常认为,冰是一种脆性的易碎物质,已有的实验数据也支持上述认识,目前实验测到的冰的最大弹性应变为0.3%左右,大于这个值就会碎裂。

虽然理论计算曾预测,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

另一方面,光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。常规的玻璃光纤,主要成分为氧化硅(石英沙),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性,被“光纤之父”高锟先生称为“古沙传捷音”。 实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水,童利民团队提出能否用冰来制备光纤?

△ 首次实现冰的弹性弯曲

“这是一个令人好奇的、有趣的问题,大约8年前,我和通讯作者之一、浙大光电学院副教授郭欣就讨论过这个想法,但由于所涉及的实验条件和技术要求很高,一时难以开展。” 2017年,在讨论二年级博士生许培臻的研究方向时,童利民再次提到了用冰来制备光纤这个想法,成果第一作者之一、当时正在准备本科毕设的崔博文,也加入了这个项目。童利民说,他们专注的研究态度和出色的实验动手能力,为实现这个想法提供了可能性。

另外,当时学校刚成立了冷冻电镜中心,为低温下的结构表征提供了研究条件。

在这项研究中,结构制备是关键的第一步。研究团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,成功生长了直径从800纳米到10微米的高质量冰单晶微纳光纤。在冷冻电镜下,验证了这些沿c轴生长的冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“作为光纤,必须能够自由弯曲,才会更有用。”童利民说。为了探索冰微纳光纤的力学性能,研究团队发明了一套低温微纳操控和转移技术,实现了液氮环境下微纳结构的灵活、精确操控。在零下150℃的冰微纳光纤中,获得了10.9%的弹性应变,接近冰的理论弹性极限(远高于此前报道的最高0.3%的应变实验值),实现了冰微纳光纤的灵活弯曲。

△ 未来应用潜力广泛

冰的分子结构随压强改变而发生相变,一直是研究者们感兴趣的问题。

但是,由于产生相变所需的压强通常在数千个大气压以上,需要使用特殊设计的金刚石压砧等设备来获得,实现条件不易。

研究团队发现,通过大应变弯曲冰微纳光纤,有可能为相变所需的高压提供一种简单的解决方案。“拉曼光谱是检测相变最灵敏的方法之一,我们现代光学仪器国家重点实验室在光谱测量技术方面有很好的基础。”郭欣说。

为此,研究团队研制了一套结合低温微纳操控的原位显微拉曼光谱测量系统,通过弹性弯曲冰微纳光纤并原位实时测量最大应变区域的拉曼光谱,发现应变超过3%时,就可以出现冰从Ih相(常压相)转变为II相(高压相之一)的特征拉曼峰。

同时,通过弹性弯曲还可以为冰施加超过一万个大气压的负压,这是目前其他实验方法难以做到的。因此,上述弹性弯曲技术为冰的相变动力学研究提供了一种新的实验方法。

更进一步,材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由H2O分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。

论文评审专家认为这项研究是“对冰物理认识的重大进步”,所展现的力学和光学特性“无疑是有趣的、独特的,具有潜在的实际应用价值”。

童利民认为,对于冰这样一种自然界中最普遍、但又最神奇的物质,相信该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。https://t.cn/A6fK9VeL

【冰有弹性,可弯曲?科学家用冰制备光纤】生长成单晶微纳光纤的冰,居然在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光。浙江大学光电学院教授童利民团队在长期研究中发现了这种奇妙的现象。他们联合来自交叉力学中心和加州大学伯克利分校的合作者,实现用冰制备光纤,相关成果https://t.cn/A6fK9Vey于7月9日发表于《科学》。

△ 从不可能到可能

在人们的常识中,冰是一种透明易碎的脆性物质,没有弹性、无法弯折。

从古至今,人类对冰的好奇心从未停息,人们对冰进行了广泛深入的研究,从冰的高压相、二维结构等新形态,到电子束光刻等应用探索,对冰的认识和应用能力得到了很大的提升。

但能否用冰来制备光纤?在长达4年的研究中,童利民团队给出了肯定答案。

图1:研究团队生长的直径均匀的冰单晶微纳光纤。

我们通常认为,冰是一种脆性的易碎物质,已有的实验数据也支持上述认识,目前实验测到的冰的最大弹性应变为0.3%左右,大于这个值就会碎裂。

虽然理论计算曾预测,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

另一方面,光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。常规的玻璃光纤,主要成分为氧化硅(石英沙),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性,被“光纤之父”高锟先生称为“古沙传捷音”。 实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水,童利民团队提出能否用冰来制备光纤?

△ 首次实现冰的弹性弯曲

“这是一个令人好奇的、有趣的问题,大约8年前,我和通讯作者之一、浙大光电学院副教授郭欣就讨论过这个想法,但由于所涉及的实验条件和技术要求很高,一时难以开展。” 2017年,在讨论二年级博士生许培臻的研究方向时,童利民再次提到了用冰来制备光纤这个想法,成果第一作者之一、当时正在准备本科毕设的崔博文,也加入了这个项目。童利民说,他们专注的研究态度和出色的实验动手能力,为实现这个想法提供了可能性。

另外,当时学校刚成立了冷冻电镜中心,为低温下的结构表征提供了研究条件。

在这项研究中,结构制备是关键的第一步。研究团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,成功生长了直径从800纳米到10微米的高质量冰单晶微纳光纤。在冷冻电镜下,验证了这些沿c轴生长的冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“作为光纤,必须能够自由弯曲,才会更有用。”童利民说。为了探索冰微纳光纤的力学性能,研究团队发明了一套低温微纳操控和转移技术,实现了液氮环境下微纳结构的灵活、精确操控。在零下150℃的冰微纳光纤中,获得了10.9%的弹性应变,接近冰的理论弹性极限(远高于此前报道的最高0.3%的应变实验值),实现了冰微纳光纤的灵活弯曲。

△ 未来应用潜力广泛

冰的分子结构随压强改变而发生相变,一直是研究者们感兴趣的问题。

但是,由于产生相变所需的压强通常在数千个大气压以上,需要使用特殊设计的金刚石压砧等设备来获得,实现条件不易。

研究团队发现,通过大应变弯曲冰微纳光纤,有可能为相变所需的高压提供一种简单的解决方案。“拉曼光谱是检测相变最灵敏的方法之一,我们现代光学仪器国家重点实验室在光谱测量技术方面有很好的基础。”郭欣说。

为此,研究团队研制了一套结合低温微纳操控的原位显微拉曼光谱测量系统,通过弹性弯曲冰微纳光纤并原位实时测量最大应变区域的拉曼光谱,发现应变超过3%时,就可以出现冰从Ih相(常压相)转变为II相(高压相之一)的特征拉曼峰。

同时,通过弹性弯曲还可以为冰施加超过一万个大气压的负压,这是目前其他实验方法难以做到的。因此,上述弹性弯曲技术为冰的相变动力学研究提供了一种新的实验方法。

更进一步,材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由H2O分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。

论文评审专家认为这项研究是“对冰物理认识的重大进步”,所展现的力学和光学特性“无疑是有趣的、独特的,具有潜在的实际应用价值”。

童利民认为,对于冰这样一种自然界中最普遍、但又最神奇的物质,相信该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。https://t.cn/A6fK9VeL


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • PCL学名为聚己内酯,是一种生物可吸收的聚合物,常用于伤口辅料、可吸收缝合线等,可被人体吸收代谢,是有FDA认证的成分。CMC学名为羧甲基纤维素,由植物提取,常
  • 小时候每次到暑假,大爷就会来接我去他家玩,同时姥姥也会接我去,我还曾经为一个暑假到底去谁家而苦恼,但最终还是在大爷家呆的久一点,因为大爷村子里有山有小溪,甚至当
  • ”据中建玖海云天项目销售人员介绍,该项目于今年6月开盘,“认房不认贷”政策出台后,该项目一天一晚的销售量就顶上此前一个月的销售量。北京某楼盘销售总监王昊司霖表示
  • 做饭的时候grandma一直在旁边念叨,催我谈恋爱,我嗯嗯啊啊敷衍她,后来见她实在没有偃旗息鼓的迹象,我索性破罐子破摔把我的手机壁纸给她看说这是我男朋友,96年
  • 如果预算再高一点,可以选择百年灵的这款AB0138241C1P1,推荐理由是搭载B01计时机芯,和帝舵的MT5813机芯是共用的,并且在劳力士、欧米茄、百年灵这
  • 。。
  • #毕雯珺[超话]##30天安利毕雯珺# D-6 喜欢他之后的改变 之前是完全欧美粉,基本上不听华语歌(是我脸大是我耳拙) pick了之后就一直想了解他的歌单,渐
  • 京华电子成立于1999年,最初他们生产的LED显示屏像素间距是1.56毫米,后来改进到1.25毫米,再从1.25毫米到0.93毫米,又从0.93毫米到0.78毫
  • 记录这个不是谴责你忘记旧朋友,你做了最正确的决定,毫无疑问,我也就想写着以后留念,说不定几年后还能给你看,哈哈哈哈,祝快乐!作者真的很会写,我们从李善得到身上可
  • #中国男篮##体育人李玉国[超话]##nba吐槽大会##nba#姚明回头一看,王治郅还在,放心退役了!让人难过的是,上一次有中国球员出现在NBA赛场还是2018
  • #dota##steam##DOTA2[超话]#和爸爸通了成年后最长的一次通话 小的时候因为他工作繁忙 没有太多的交流 给我的印象就是冷冷的 每次就是简单的互相
  • ”-“大器晚成也好,永远到不了山顶也罢,但一定要快乐和真诚,没有什么大不了的,这个世界上总要允许普通人的存在吧,黄昏浸在花海中,晚霞依在天空怀里。”-“大器晚成
  • 朋友也需要道歉、包容、体谅、互相监督、互相扶持……我不开心了,找你聊聊天,你不开心了找我喝喝酒,如果我没空你自己克服一下(bushi.啊哈哈哈~如果你做了什么让
  • 为什么在家里很经济情况很差的情况下要拼死生下四个孩子只为了最后一个男孩的到来 导致女孩子们没钱上学 甚至要将养不起的那个女孩子送给别人 并且在她长大之后用行为反
  • 【瑰梦UP池】轮替更新预告她高贵的姓氏本意即是【蔷薇之仆】她将用她的一生守护这株扎根于荒野数百年的蔷薇,绝不令它在自己手中枯萎,更不允许任何人损害它。 【朴镜浅
  • 蛋卷酥依旧火力超猛,因为不断的有童鞋反馈吃过,确实好吃小香薯也是,很多人盒马叮咚都买过,评价非常好。所以请务必放软了吃❗另外昨天有童鞋反馈襄阳蟠桃不好吃不甜,了
  • 可供选择的风格稍窄,2.是否与脸型五官适配这一点也挺关键,妈生鼻”虽然用来形容鼻子真实,但要明白一点,适合别人的鼻子,不一定适合你。一般来说,一个妈生鼻”的形成
  • 周一早上就忙起来就挺烦,屁大点事儿给我打语音也很烦,这种垃圾借口到底还要用几次,我真的耐心耗尽了,这sb今天再惹我,我就炸死她[微笑][微笑][微笑][微笑][
  • 身为历史家,讲起历朝历代的巨贪,他自然是如数家珍,顺理成章地,也就说到历史上的反贪,如宋时的高薪养廉(厚禄)明朝朱元璋时代的严刑峻法(剝皮)。#潇洒如风火州人[
  • #快团团[超话]##团购# 【张小团团】超模比例 | 『杜小宅D studio小猫魔术裤·弹力牛仔烟管裤+弹力牛仔微喇裤』三防面料·优雅通勤·利落穿搭·称霸衣